J'applique

de Fresnel connaissant le signal?

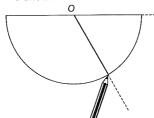
Tracer \overrightarrow{OM} , le vecteur de Fresnel associé au signal

$$u(t) = 3\sin\left(200\pi t - \frac{\pi}{3}\right)$$

On prendra 1 cm pour 1 V.

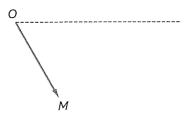
 π rad est équivalent à 180°. $\frac{\pi}{3}$ rad = 60°

Le vecteur \overrightarrow{OM} est défini par:


 \blacksquare une norme $\|\overrightarrow{OM}\| = 3$

 \blacksquare un angle $(\vec{i}, \overrightarrow{OM}) = -\frac{\pi}{3}$.

- On place un point O, et on trace un axe horizontal.


- On trace un angle de 60° dans le sens des aiguilles d'une montre.

Aide

Le sens positif c'est le sens inverse du déplacement des aiguilles d'une montre.

- On place M à 3 cm du point O et on trace \overline{OM} .

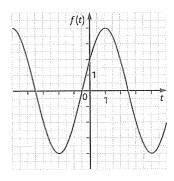
Pour chaque situation, tracer \overline{OM} le vecteur de Fresnel associé au signal.

a)
$$u(t) = 4\sin\left(100\pi t + \frac{\pi}{6}\right)$$

avec 1 cm
$$\triangleq$$
 1 V
b) $u(t) = 2.5 \sin \left(100 \pi t - \frac{\pi}{4} \right)$

c)
$$u(t) = 220\sqrt{2}\sin(100\pi t + 0.5)$$

avec 1 cm = 100 V


d)
$$u(t) = 380 \sin(100\pi t - 0.71)$$

e)
$$u(t) = 220\sqrt{2} \sin(100\pi t)$$

avec 1 cm \triangleq 100 V

Comment déterminer l'expression d'une fonction $f: t \mapsto A\sin(\omega t + \varphi)$ à partir de sa représentation graphique?

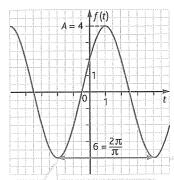
Soit la représentation graphique ci-dessous :

- a) À quel type de fonction peut-on associer cette représentation graphique?
- b) Déterminer graphiquement l'expression de la fonction f associée à ce signal.
- a) Cette représentation graphique peut être associée à $f: t \mapsto A\sin(\omega t + \varphi).$
- b) Détermination de A:

A correspond au maximum de la fonction. On lit graphiquement: A = 4.

Détermination de ω :

On lit graphiquement la valeur de la période, soit 6.

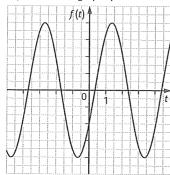

On en déduit que
$$\omega = \frac{2\pi}{6} \Rightarrow \omega = \frac{\pi}{3}$$
.

Détermination de φ .

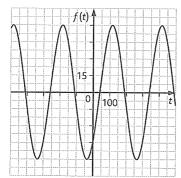
La représentation graphique coupe l'axe des ordonnées

au point (0; 2) avec $A\sin \varphi = 2$

$$4\sin \varphi = 2 , \sin \varphi = 0,5 \text{ c'est-à-dire } \varphi = \frac{\pi}{6}.$$


Mide La représentation passe par un minimum qui est -A.

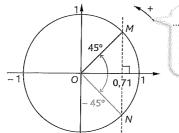
Nide La période correspond à l'intrervalle entre deux points identiques de la courbe.


On obtient $f: t \mapsto 4\sin\left(\frac{\pi}{3}t + \frac{\pi}{6}\right)$.

. J'applique

(1) Soit la représentation graphique ci-dessous.

- a) À quel type de fonction peut-on associer cette représentation graphique?
- b) Déterminer graphiquement l'expression de la fonction f associée à ce signal.
- (11) Soit la représentation graphique ci-dessous.



- a) À quel type de fonction peut-on associer cette représentation graphique?
- b) Déterminer graphiquement l'expression de la fonction fassociée à ce signal.

Comment résoudre une équation $\cos x = a$ en utilisant le cercle

À l'aide d'un cercle trigonométrique résoudre l'équation $\cos x = 0.71 \text{ sur } [-2\pi; 2\pi].$

Dans un cercle trigonométrique, on place le nombre 0,71 sur l'axe des abscisses. La perpendiculaire à l'axe des abscisses passant par le point (0,71; 0) coupe le cercle en deux points M et N.

Nide L'axe des abscisses est un axe de symétrie pour les solutions α et $-\alpha$.

On trace les segments [OM] et [ON]. Les solutions de l'équation $\cos x = 0.71$ sont 45° et -45°.

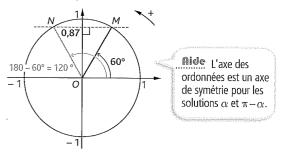
D À l'aide d'un cercle trigonométrique résoudre, sur $[-2\pi; 2\pi]$, les équations $\sin x = a$ avec:

a) a = 0.5

b) a = 0.87

c) a = -0.5

d) a = -0.3


e) a = 0.6

f) a = -0.71.

Comment résoudre une équation sin*x=b* enutilisant le cerde (udšouowędydne s

À l'aide d'un cercle trigonométrique résoudre l'équation $\sin x = 0.87 \text{ sur } [-2\pi; 2\pi].$

Dans un cercle trigonométrique, on place le nombre 0,87 sur l'axe des ordonnées. La perpendiculaire à l'axe des abscisses passant par le point (0; 0,87) coupe le cercle en deux points M et N.

On trace les segments [OM] et [ON]. Les solutions de l'équation $\sin x = 0.87$ sont 60° et 120°.

À l'aide d'un cercle trigonométrique, résoudre, sur $[-2\pi; 2\pi]$, les équations $\cos x = b$ avec:

a) b = 0.5

b) b = 0.71

c) b = -0.2

d) b = -0.71

e) b = -0.5

f) b = 0.4.

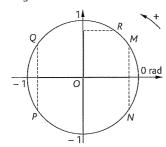
Comment utiliser le cercle trigonométrique pour écrire les cosinus et les sinus de -x, $\pi + x$, $\pi - x$,

- x connaissant cos x et sin x?

On donne $\cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4}$. Écrire la valeur exacte de :

a)
$$\cos\left(-\frac{\pi}{5}\right)$$

b)
$$\cos\left(\pi + \frac{\pi}{5}\right)$$
,


c)
$$\cos\left(\pi - \frac{\pi}{5}\right)$$

a)
$$\cos\left(-\frac{\pi}{5}\right)$$
, b) $\cos\left(\pi + \frac{\pi}{5}\right)$, c) $\cos\left(\pi - \frac{\pi}{5}\right)$, d) $\sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right)$.

J'applique

On trace un cercle trigonométrique sur lequel on place les points M, N, P, Q et R images respectives des réels $\frac{\pi}{5}$, $-\frac{\pi}{5}$, $\pi + \frac{\pi}{5}$, $\pi - \frac{\pi}{5}$, $\frac{\pi}{2} - \frac{\pi}{5}$.

Remarque: $\frac{\pi}{5}$ correspond à 36°.

Par lecture graphique, on déduit :

a)
$$\cos\left(-\frac{\pi}{5}\right) = \cos\frac{\pi}{5}$$

b)
$$\cos\left(\pi + \frac{\pi}{5}\right) = -\cos\frac{\pi}{5}$$

c)
$$\cos\left(\pi - \frac{\pi}{5}\right) = -\cos\frac{\pi}{5}$$

d)
$$\sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos\frac{\pi}{5}$$

On donne $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

Écrire la valeur exacte de :

a)
$$\cos\left(-\frac{\pi}{12}\right)$$

a)
$$\cos\left(-\frac{\pi}{12}\right)$$
, b) $\cos\left(\pi + \frac{\pi}{12}\right)$, c) $\cos\left(\pi - \frac{\pi}{12}\right)$, d) $\sin\left(\frac{\pi}{2} - \frac{\pi}{12}\right)$.

c)
$$\cos\left(\pi - \frac{\pi}{12}\right)$$

d)
$$\sin\left(\frac{\pi}{2} - \frac{\pi}{12}\right)$$

On donne $\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$.

Écrire la valeur exacte de :

a)
$$\cos\left(\frac{\pi}{2} - \frac{5\pi}{4}\right)$$
, b) $\sin\left(\pi - \frac{5\pi}{4}\right)$,

b)
$$\sin\left(\pi - \frac{5\pi}{4}\right)$$
,

c)
$$\sin\left(\pi + \frac{5\pi}{4}\right)$$
, d) $\sin\left(-\frac{5\pi}{4}\right)$.

d)
$$\sin\left(-\frac{5\pi}{4}\right)$$

13 On donne
$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
.

Écrire la valeur exacte de :

a)
$$\cos\left(\pi - \frac{\pi}{6}\right)$$
, b) $\cos\left(-\frac{\pi}{6}\right)$,

b)
$$\cos\left(-\frac{\pi}{6}\right)$$
,

c)
$$\cos\left(\pi + \frac{\pi}{6}\right)$$

c)
$$\cos\left(\pi + \frac{\pi}{6}\right)$$
, d) $\sin\left(\frac{\pi}{2} - \frac{\pi}{6}\right)$.

$$\text{(b) On donne } \cos \frac{\pi}{10} = \frac{\sqrt{5} - 1}{4} \ .$$

Écrire la valeur exacte de :

a)
$$\sin\left(\pi - \frac{\pi}{10}\right)$$
,

b)
$$\sin\left(\pi + \frac{\pi}{10}\right)$$

c)
$$\cos\left(\frac{\pi}{2} + \frac{\pi}{10}\right)$$
, d) $\cos\left(\frac{\pi}{2} - \frac{\pi}{10}\right)$.

d)
$$\cos\left(\frac{\pi}{2} - \frac{\pi}{10}\right)$$

3 (a Ya

Choisir la(les) bonne(s) réponse(s) aux questions

Quelle est la norme du vecteur de Fresnel associé au signal $u(t) = 220\sqrt{2} \sin(100\pi t - 0,67)$?

- a) -0.67 b) $220\sqrt{2}$ c) 100π .

Quel est l'aspect du vecteur de Fresnel associé au signal $u(t) = 30 \sin(25t)$?

- a) ____ b) ___ c)

Si $\cos x = 0.123$ alors $\cos(\pi + x)$ est égal à:

- a) 0.123 b) -0.123 c) 3.264.

Dans un cercle trigonométrique, M est le point image du réel x et N le point image du réel $\pi - x$. Le point N est le symétrique de M par une symétrie axiale d'axe la droite:

- a) des abscisses b) des ordonnées c) d'équation y = x.

Pour obtenir la courbe représentative de la fonction $f: x \mapsto \sin x$ à partir de la représentation graphique de la fonction $q: x \mapsto cos x$ on utilise la relation:

a)
$$\cos x = \sin x$$

$$\cos x = \sin\left(\frac{\pi}{2} + x\right)$$

a)
$$\cos x = \sin x$$
 b) $\cos x = \sin \left(\frac{\pi}{2} + x\right)$
c) $\cos x = \sin \left(\frac{\pi}{2} - x\right)$.