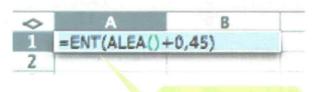
>> J'expérimente avec les TIC

- Le sang humain se classe en quatre groupes distincts : A, B, AB et O. Le sang de la population française est réparti dans les quatre groupes de la manière suivante :
- 40 % du sang de la population française appartient au groupe A;
- 10 % au groupe B;
- 5 % au groupe AB;
- 45 % au groupe 0.


Lors de la prise de sang de 100 personnes, les résultats des analyses présentent 52 personnes ayant un sang appartenant au groupe 0.

On cherche à vérifier si ces résultats sont conformes à la répartition de la population française en illustrant la réponse à l'aide d'une simulation informatique.

a) Réalisation d'une simulation :

On va réaliser un tableau regroupant 150 expériences aléatoires sur un échantillon d'une taille de 100 correspondant à un événement d'une fréquence d'apparition de 45 % [probabilité de 0,45].

1 - Taper dans la cellule A1 d'un tableur la formule : =ENT(ALEA()+0,45).

La fonction ALEA() permet d'obtenir un nombre aléatoire compris entre 0 et 1.

2 - Réaliser un « glisser-coller » sur la plage A1:ET. La valeur 1 correspond à l'apparition de l'événement.

3 - « Glisser-coller » jusqu'à la case ET100.

On obtient un tableau contenant 150 expériences aléatoires sur un échantillon d'une taille de 100 (de A1 à ET100).

4 - Déterminer le nombre d'apparitions de l'événement en tapant la formule =NB.SI(A1:A100;1) dans la cellule A103.

	1	200
102		
103	= NB.SI(A1:A100;1)	-58-41
104		

5 - Réaliser un « glisser-coller » sur la plage A103:ET1003 pour déterminer pour chaque colonne (chaque expérience aléatoire) le nombre d'apparitions de l'événement.

96	0	1	0	-1	0	0
97	1	1	1	1	1	1
98	1	0	1	0	1	0
99	1	1	0	0	0	1
100	0	0	0	1	1	0
101						
102						
103	45	48	44	52	57	42

6 - Déterminer le nombre de fois où 52 apparaît en tapant la formule : **=NB.SI(A103:ET103,52)** dans la cellule A105.

AUT	
105	= NB.SI(A103:ET103;52)
106	

Remarque : On peut actualiser toutes les données en appuyant sur la touche F9 et ainsi recommencer la simulation.

- b) Vérifier que l'apparition de 52 est un événement rare (au plus 5 % des expériences aléatoires).
- c) En déduire si les résultats de l'analyse de sang de l'échantillon de 100 personnes sont conformes à la répartition de la population française dans le groupe 0.
- Théo et Julien jouent à un jeu de société où, à chaque tour, le joueur doit lancer un dé équilibré. La règle du jeu permet à celui qui obtient un « six » de rejouer.

Julien certifie que cet avantage est dû au fait qu'il est plus difficile d'obtenir le « six » que les autres faces du dé.

On cherche à montrer qu'il a tort.

- a) Activité expérimentale :
- 1 Réaliser 4 séries de 10 lancers du dé, relever les résultats et compléter le tableau ci dessous :

Série de 10 lancers		Série 1	Série 2	Série 3	Série 4
DOLL	«1»				
Fréquence	«2»				
(en %)	«3»				
d'obtention	«4»				
de la face :	«5»				
	«6»				

- 2 Réaliser pour chacune des séries, le diagramme en bâtons représentant la fréquence (en %) d'obtention de chacune des faces \ll 1 \gg , \ll 2 \gg , \ll 3 \gg , \ll 4 \gg , \ll 5 \gg , \ll 6 \gg .
- 3 Après observation de ces quatre diagrammes. Que peut-on conclure ?
- b) Activité de simulation à l'aide d'un tableur :
- 1 Entrer les instructions suivantes :

Dans la cellule A1 : =ALEA()
Dans la cellule B1 : =6*A1+1
Dans la cellule C1 : =ENT(B1)

2 - Sélectionner les cellules A1, B1 et C1, puis réaliser un « glisser-coller » des cellules jusqu'à la ligne 50.

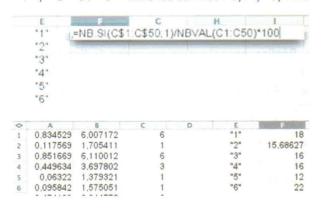
. J'expérimente avec les TIC

0	Α	В	C
1	0,546605	4,279628	4
2	0,685281	5,111685	5
3	0,354249	3,125492	3
4	0,286744	2,720464	2
5	0,32407	2,944423	2
6	0,907654	6,445923	6
7	0,280333	2,681997	2
8	0,359702	3,15821	3
9	0,840825	6,044952	6
10	0,956841	6,741046	6

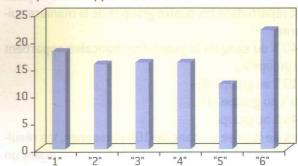
Attention : ces résultats ne sont que des exemples, puisqu'il s'agit de nombres aléatoires.

Comment peut-on expliquer que la colonne C simule 50 lancers d'un dé à 6 faces ?

3 - Taper « 1 » dans la cellule E1 puis se placer sur la cellule F1 et déterminer la fréquence d'apparition du « 1 » dans la plage C1:C50 en tapant l'instruction :

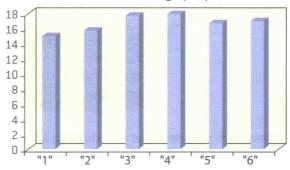

=NB.SI(C1:C50;1)/NBVAL(C1:C50)*100

La fonction NBVAL compte le nombre total de cellule sur la plage considérée.

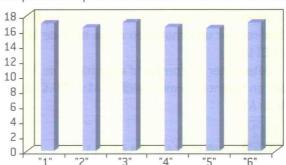

4 - Taper « 2 » dans la cellule E3 puis se placer sur la cellule F3 et déterminer la fréquence d'apparition du « 2 » dans la plage C1:C50 en tapant l'instruction :

=NB.SI(C1:C50;2)/NBVAL(C1:C50)*100

5 - De la même manière taper successivement « 3 », « 4 », « 5 » et « 6 » dans les cellules E5, E7, E9, E11 puis déterminer les fréquences d'apparition du « 3 », « 4 », « 5 » et « 6 » dans les cellules F5, F7, F9, F11.


6 - Représenter par un graphique comme ci-dessous la fréquence d'apparition de chacune des faces.

- 7 Sélectionner les cellules A50, B50 et C50 et réaliser de nouveau un « glisser-coller » jusqu'à la ligne 1 000.
- 8 Modifier les formules des cellules F1, F3, F5, F7, F9 et F11 pour déterminer la fréquence d'apparition de chaque face dans la plage C1:C1000.


E	F	
"1"	15	
"2"	15,7	
"3"	17,7	
"4"	17,9	
"5"	16,7	
"6"	17	

Observer les modifications du graphique.

9 - Recommencer la même démarche trois fois en réalisant des « glisser-copier » jusqu'à la 2 000° ligne, puis la 5 000° ligne, et enfin la 10 000° ligne.

Exemple obtenu pour une simulation de 1 000 lancers :

