Fonctions et dérivation

VOUS ALLEZ APPRENDRE A ...

- Déterminer graphiquement le nombre dérivé d'une fonction pour une valeur de la variable.
- Construire une tangente à la courbe représentative d'une fonction et déterminer une équation de cette tangente.
- Utiliser les règles de dérivation pour calculer la dérivée d'une fonction.
- Utiliser la fonction dérivée pour :
 - étudier les variations d'une fonction sur un intervalle ;
 - mettre en évidence un minimum ou un maximum d'une fonction.

POUR VOUS AIDER ...

Fiche méthode 23 • p. 163

Comment déterminer graphiquement un nombre dérivé ?

Fiche méthode 24 • p. 163

Comment construire une tangente et en déterminer une équation ?

Fiche méthode 25 • p. 164

Comment calculer une dérivée ?

Fiche méthode 26 • p. 164

Comment étudier les variations d'une fonction?

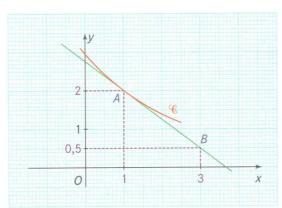
Fiche l'essentiel • p. 182

Exercices d'entraînement

Nombre dérivé et tangente

Fiches méthodes 23 et 24

La courbe \mathscr{C} est la courbe représentative d'une fonction f. Les coordonnées de A et B sont : A(1; 2), B(3; 0,5). La droite (AB) est la tangente en A à \mathscr{C} .

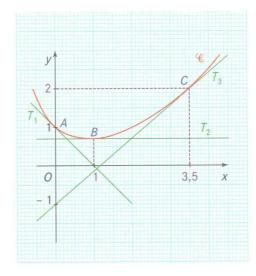


- **1.** Calculer le coefficient directeur de la droite (*AB*).
- **2.** Donner le nombre dérivé f'(1).

La courbe \mathscr{C} est la courbe représentative d'une fonction f.

Les droites T_1 , T_2 , T_3 sont les tangentes à la courbe \mathscr{C} aux points A, B, C.

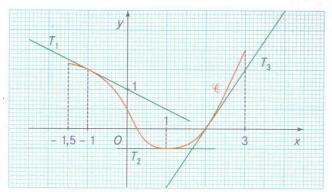
Déterminer, par lecture graphique, les nombres dérivés f'(0), f'(1), f'(3,5).



La courbe \mathscr{C} est la courbe représentative d'une fonction f sur l'intervalle [-1,5;3].

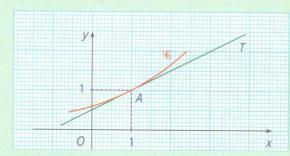
Les droites T_1 , T_2 , T_3 sont les tangentes à $\mathscr C$ en ses points d'abscisses -1, 1, 2.

Déterminer graphiquement les nombres dérivés : f'(-1), f'(1), f'(2).



...déterminer graphiquement un nombre dérivé ?

1. $\mathscr C$ est la courbe représentative d'une fonction f. La droite T est tangente en A à $\mathscr C$.



Quel est le nombre dérivé f'(1)?

Q - 0.5

02

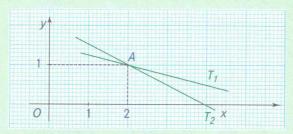
□ 0,5

Fiche méthode 23 p. 163

Réponse p. 189

...construire une tangente et d'en déterminer l'équation ?

2. Le point *A* est un point de la courbe représentative $\mathscr C$ d'une fonction *f*. On sait que f'(2) = -0.25.



a) Quelle est la tangente en A à \mathscr{C} ?

 \Box la droite T_1

 \Box la droite T_2

b) Quelle est l'équation de cette tangente ?

y = -0.25x + 2

y = -0.25x + 1.5

Fiche méthode 24 p. 163

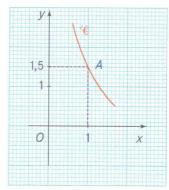
Réponse p. 189

LE SAVIEZ-VOUS ?

En latin « tangere » signifie « toucher ». Parmi les droites passant par A, la tangente en A à & est celle. qui semble « toucher » &.

La courbe \mathscr{C} est la courbe représentative d'une fonction f.

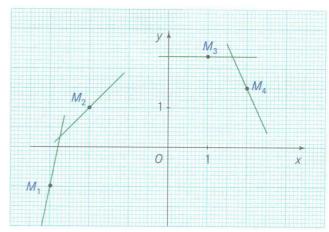
A est le point de \mathscr{C} de coordonnées (1; 1,5).



- **1.** Tracer approximativement à la règle la tangente en A à la courbe \mathscr{C} .
- **2.** Indiquer quel est le nombre dérivé f'(1) sachant qu'il figure dans la liste suivante :

$$-3,5;-1,5;-2;2,5.$$

Dans le repère ci-dessous, sont placés les points M_1 , M_2 , M_3 , M_4 par lesquels passe la courbe représentative d'une fonction f. Les tangentes en ces points sont tracées. Donner une allure possible de la courbe.



6 Le plan est rapporté à un repère orthonormal d'unité graphique 1 cm.

Les points A(0; -1) et B(2; 0) sont des points de la courbe représentative \mathscr{C} d'une fonction f.

La tangente en A à $\mathscr C$ passe par le point C(-2;0); la tangente en B à $\mathscr C$ passe par le point D(0;-4).

- **1.** Placer les points A, B, C et D.
- **2.** Tracer les tangentes en A et en B à la courbe \mathscr{C} .
- **3.** Tracer une allure possible de la courbe *C*.
- **4.** Déterminer graphiquement f'(0) et f'(2).

- Dans un repère orthonormal d'unité graphique 2 cm, les points A(-1;1), B(0;2), C(2;1,5) appartiennent à la courbe représentative $\mathscr C$ d'une fonction f.
- **1.** Placer les points A, B et C.
- **3.** Sachant que f'(0) = 0, construire la tangente T_2 en B à \mathscr{C} .
- **4.** Donner une allure possible de la courbe %.
- On considère la fonction f définie sur l'intervalle [-2; 2] par $f(x) = x^2$.

On note & sa courbe représentative dans un repère orthonormal d'unité graphique 2 cm.

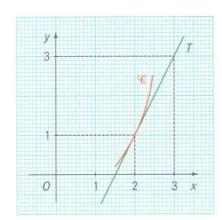
- **1.** Placer les points A(-1; 1) et B(1; 1) de la courbe \mathscr{C}
- **b**) Sachant que f'(1) = 2, construire la tangente T_2 en B à \mathscr{C} .
- **3.** Tracer la courbe \mathscr{C} .
- On considère la fonction f définie sur l'intervalle [0,5;4] par $f(x) = \frac{1}{x}$.

On note & sa courbe représentative dans un repère orthonormal d'unité graphique 2 cm.

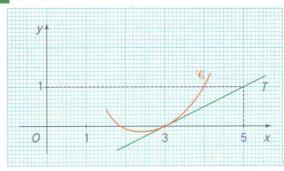
- **1.** Placer les points A(1; 1) et B(2; 0,5) de la courbe \mathscr{C} .
- **2.** a) Sachant que f'(1) = -1, construire la tangente T_1 en A à \mathscr{C} .
- b) Sachant que $f'(2) = -\frac{1}{4}$, construire la tangente T_2 en B à \mathscr{C} .
- **3.** Tracer la courbe *℃*.
 - **Pour les exercices 10 à 13,** % est la courbe représentative d'une fonction f.

La droite T est la tangente à ${\mathscr C}$ en son point d'abscisse a.

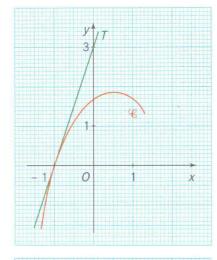
- 1. À partir du graphique, déterminer f'(a).
- 2. Déterminer une équation de la tangente T.
- a=2



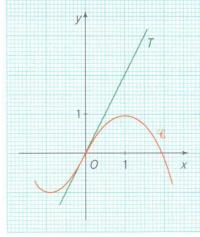
II a=3



a = -1



 $\mathbf{B} \quad a = 0$



Le plan est rapporté à un repère orthonormal d'unité graphique 1 cm.

 \mathscr{C} est la courbe représentative de la fonction f définie pour tout nombre x réel par $f(x) = x^2$.

- **1.** a) Calculer f'(2) et déterminer une équation de la tàngente T_1 à la courbe $\mathscr C$ en son point d'abscisse 2.
- **b**) Calculer l'abscisse du point P où la tangente T_1 coupe l'axe des abscisses.
- **2.** Tracer la droite T_1 et la courbe \mathscr{C} .
- Le plan est rapporté à un repère orthonormal d'unité graphique 2 cm.

 \mathscr{C} est la courbe représentative de la fonction f définie sur [0,5;4] par $f(x) = \frac{1}{x}$.

 T_1 désigne la tangente à $\mathscr C$ en son point d'abscisse 1 ; T_2 désigne la tangente à $\mathscr C$ en son point d'abscisse 2.

- **1.** Calculer f'(1) et f'(2), puis déterminer une équation de T_1 et de T_2 .
- 2. Calculer les coordonnées des points d'intersection de T_1 avec les axes du repère, puis celles des points d'intersection de T_2 avec les axes du repère.
- **3.** Tracer les droites T_1 et T_2 et la courbe \mathscr{C} .
- On dispose, pour une fonction f définie sur l'intervalle [-1; 2] des informations données dans le tableau suivant. Dans ce tableau, f'(a) désigne le nombre dérivé de f en a.

а	- 1	0	0,5	1	2
f(a)	- 1	0	1	0	-2
f'(a)		3	0	-4	

Dans le plan rapporté à un repère orthonormal d'unité graphique 2 cm, on note & la courbe représentative de f.

- **1.** Placer les points de coordonnées (a; f(a)).
- **2.** Quand f'(a) est donné, construire la tangente à la courbe \mathscr{C} en son point abscisse a.
- a) Donner une allure possible de la courbe &.

Calcul de dérivées

Fiche méthode 25

- Pour les exercices 17 à 28, calculer la dérivée f'(x)de la fonction f.
- f(x) = -4x; $f(x) = \frac{1}{5}x^2$.
- 18 f(x) = 3x 1; $f(x) = 2x^3$.
- $f(x) = \frac{3}{x}; f(x) = 2x^2 5x.$
- $f(x) = -\frac{2}{x}; f(x) = \frac{1}{4}x^2 6x + 4.$
- 21 $f(x) = x^2 + 3x$; $f(x) = x + \frac{1}{x}$.
- $f(x) = x^2 \frac{1}{x}$; $f(x) = x^2 + 3x 7$.
- $f(x) = x^3 4x^2 + 5x + 1.$
- 24 $f(x) = 4x^2 5x + 2$; $f(x) = 2x^2 \frac{5}{x}$.
- 25 $f(x) = \frac{1}{3}x^3 4x^2 + 1$.
- **26** $f(x) = x^3 + x + 1$; $f(x) = \frac{4}{x} \frac{1}{3}x^2$.
- $f(x) = -x^2 + 3x 4$; $f(x) = \frac{3}{4x} \frac{5}{2}x^2$.
- 28 $f(x) = \frac{x^3}{3} + 2x$; $f(x) = 2x^2 + \frac{5}{x}$.

29 On considère la fonction f définie pour tout nombre réel x par :

$$f(x) = (x-1)(x+2).$$

- **1.** En développant le produit (x-1)(x+2), donner une autre expression de f(x).
- **2.** Calculer f'(x).
- 30 On considère la fonction f définie pour tout nombre réel *x* strictement positif par :

$$f(x) = \frac{2x^2 + 3}{x}.$$

- **1.** Écrire f(x) sous la forme : $f(x) = ax + \frac{b}{x}$ où a et bsont des nombres réels.
- 2. En utilisant la forme obtenue précédemment, calculer f'(x).
- Pour les exercices 31 à 36, on considère une fonc-
 - 1. Calculer f'(x) où f' désigne la fonction dérivée de f. 2. Calculer le nombre dérivé f'(a) où a est un nombre
- 31 $f(x) = 3 \frac{1}{2}x$; a = 0.
- 32 $f(x) = 2x^2 4x$; a = 1.
- 33 $f(x) = 2x \frac{1}{x}$; a = -1.
- 34 $f(x) = \frac{5}{x}$; a = 2.
- 35 $f(x) = \frac{-3}{x} + 2$; a = 3.
- 36 $f(x) = x^3 3x + 1$; a = 1.

CAPABLE DE

.calculer une dérivée ?

On lit dans le formulaire d'examen que :

si $u(x) = x^2$, alors u'(x) = 2x.

si v(x) = 2x + 5, alors v'(x) = 2.

- 1. Si $f(x) = x^2 + 2x + 5$, quelle est l'expression de f'(x)?
 - $\Box f'(x) = 2x 2$
 - $\Box f'(x) = 2(2x)$
 - $\Box f'(x) = 2x + 2$
- 2. Si $f(x) = 3x^2$, quelle est l'expression de f'(x)?
 - $\Box f'(x) = 6x$
- $\Box f'(x) = 5x$
- $\Box f'(x) = 3x$

Fiche méthode 25 p. 164

Réponse p. 189

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{5} x^2 - 4x + 2.$$

- **1.** Calculer f'(x).
- **2.** Calculer les nombres dérivés f'(-1) et f'(0).

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^2 - 3x + 1$$
.

On note $\mathscr C$ sa courbe représentative dans un repère orthogonal.

- **1.** Calculer f'(x).
- **2.** Déterminer une équation de la tangente T à la courbe $\mathscr C$ en son point d'abscisse 2.

Soit *f* la fonction définie pour tout nombre réel *x* par :

$$f(x) = -x^3 + 3x - 1$$
.

- **1.** Déterminer f'(x), puis calculer f'(0) et f'(1).
- **2.** Dans le plan rapporté à un repère orthogonal, on note $\mathscr C$ la courbe représentative de f.

 T_1 et T_2 sont les tangentes à $\mathscr C$ en ses points d'abscisses 0 et 1.

Déterminer une équation des droites T_1 et T_2 .

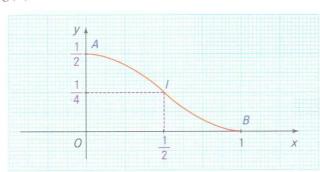
40 Dans la représentation ci-dessous :

- l'arc \widehat{AI} est un arc de la courbe représentative de la fonction f définie pour tout nombre réel x par :

$$f(x) = -x^2 + \frac{1}{2}$$
.

- l'arc \widehat{IB} est un arc de la courbe représentative de la fonction g définie pour tout nombre réel x par :

$$g(x) = x^2 - 2x + 1$$
.



- **1.** Vérifier que $g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right)$.
- **2.** Calculer f'(x), puis $f'\left(\frac{1}{2}\right)$.
- **3.** Calculer g'(x), puis $g'\left(\frac{1}{2}\right)$.
- **4.** Comparer $f'\left(\frac{1}{2}\right)$ et $g'\left(\frac{1}{2}\right)$. Interpréter géométriquement le résultat obtenu.

Variations de fonctions ; Recherche de maximum ou de minimum

Fiche méthode 26

fest une fonction définie sur l'intervalle [-1; 4]. Le tableau de variation de f est le suivant

X	- 1		1		4
f'(x)		-	0	+	
f(x)	4 _		* 1 -		4

Dans le plan rapporté à un repère orthonormal d'unité graphique 1 cm, tracer une courbe possible représentant la fonction f.

fest une fonction définie sur l'intervalle [-4; -1]. Le plan est rapporté à un repère orthonormal d'unité graphique 1 cm.

Construire, à partir du tableau de variation de *f*, une représentation graphique possible de *f*.

X	-4		- 2		1
f'(x)		+	0	-	
f(x)	-4		×1 \	_	- 2

- Pour chacun des exercices 43 à 46, on donne une fonction f
 - 1. Calculer f'(x) où f' désigne la fonction dérivée de f.
 - 2. Compléter le tableau de variation de f où a est un nombre précisé. Indiquer si la fonction f admet en a un minimum ou un maximum.

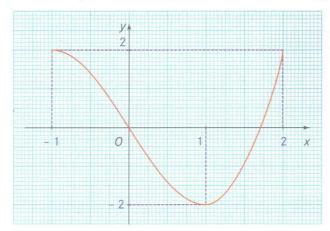
X	а
signe de $f'(x)$	0
variation de f	

- 43 $f(x) = x^2 2x + 2$; a = 1.
- 44 $f(x) = -x^2 + 4x 3$; a = 2.
- **45** $f(x) = -\frac{1}{2}x^2 x 1$; a = -1.
- **46** $f(x) = 2x^2 4x + 1$; a = 1.
- Pour chacun des exercices 47 à 50, on considère une fonction f définie sur un intervalle précisé.
 - 1. Calculer f'(x).
 - 2. Établir le tableau de variation de f.
- 47 Sur [-1; 2], $f(x) = 2x^2 2x$.
- 48 Sur [-1; 5], $f(x) = x^2 2x 1$.

49 Sur [1; 5],
$$f(x) = \frac{1}{x} - \frac{1}{5}$$
.

50 Sur
$$[0,5;5]$$
, $f(x) = 0.3x + \frac{0.6}{x}$.

fest une fonction définie sur l'intervalle [-1; 2]. La courbe représentative de f est la suivante.



Compléter, à partir de l'observation de la courbe, le tableau de variation de *f*.

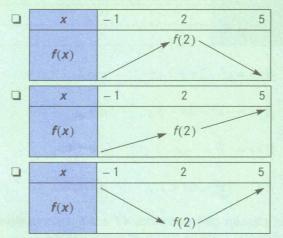
Х	-1	2
f'(x)		
f(x)		

...étudier les variations d'une fonction ?

Une fonction f est définie sur l'intervalle [-1; 5]; on donne le tableau de signe de f'(x).

X	-1 _ 2	5
signe de $f'(x)$	- 0	+

1. Quel est le tableau de variation de f?



2. Sur l'intervalle [-1; 5], f admet-elle un maximum ou un minimum égal à f(2)?

un maximum

un minimum

Fiche méthode 26 p. 164

Réponse p. 189

Pour les exercices 52 à 56.

- 1. Étudier les variations de la fonction f et dresser son tableau de variation.
- 2. Dans un repère orthonormal, dont l'unité graphique est donnée, tracer la courbe représentative de f.

52 *f* définie sur [-1; 3] par :

$$f(x) = x^2 + 1$$
;

unité graphique : 1 cm.

53 *f* définie sur [0,5;5] par :

$$f(x) = -\frac{3}{x}$$
; unité graphique : 2 cm.

54 *f* définie sur [-1; 2] par :

$$f(x) = 1 - 2x^2 ;$$

unité graphique : 1 cm.

55 *f* définie sur [-1; 3,5] par :

$$f(x) = 2x^2 - 6x + 1$$
; unité graphique : 1 cm.

56 f définie sur [-2; 2] par :

$$f(x) = -x^2 + 3x + 5$$
;

unité graphique: 1 cm.

On considère la fonction f définie sur l'intervalle [-2; 2] par :

$$f(x) = \frac{1}{3} x^3 - x.$$

- **1.** a) Calculer f'(x).
- b) Vérifier que f'(x) peut s'écrire sous la forme : f'(x) = (x-1)(x+1).
- 2. Compléter le tableau suivant.

X	-2	- 1	1	2
signe de (x - 1)			0	
signe de (x + 1)	0			
signe de $(x-1)(x+1)$		0	0	

3. Dresser le tableau de variation de *f*.

On considère la fonction f définie sur l'intervalle [-1; 2] par :

$$f(x) = 3x^2 - 3x^3$$
.

1. Calculer f'(x) et vérifier que f'(x) peut s'écrire sous la forme :

$$f'(x) = 3x(2-3x).$$

2. Compléter le tableau suivant.

x	- 1		0	2 3	2
signe de $f'(x)$		=	0	0	
variation de f	6			4/9	- 12